Institut für Angewandte Mathematik (Math D)
Dipl.-Ing. Dr. techn. Richard Löscher
Anschrift Technische Universität Graz
Institut für Angewandte Mathematik
Steyrergasse 30/III
A 8010 Graz
Telephon +43(0)316-873-8623
Zimmer ST 03 244
Mail loescher@math.tugraz.at
Sprechstunde nach Vereinbarung
Lehrveranstaltungen (Assistent)
  • SS 2025:
    Technische Numerik II (Vorlesung + Übung)
  • WS 2024/25:
    Technische Numerik (Vorlesung)
    Mathematische Modelle für Digital Engineering (Vorlesungsübung)
  • SS 2024:
    Space-Time methods (Übungen, TU Graz, Prof. Steinbach)
  • WS 2023/24:
    Partielle Differentialgleichungen (Übungen, TU Graz, Prof. Steinbach)
    Mathematische Modelle für Digital Engineering (Vorlesungsübung, TU Graz, Prof. Steinbach)
  • SS 2023:
    Boundary Integral Operators (Übungen, TU Graz, Prof. Steinbach)
  • WS 2022/23:
    Gewöhnliche Differentialgleichungen (Übungen, TU Graz, Prof. Steinbach)
    Mathematische Modelle für Digital Engineering (Übungen, TU Graz, Prof. Steinbach)
  • SS 2022:
    Space-Time methods (Übungen, TU Graz, Prof. Steinbach)
  • WS 2021/22:
    Numerik gewöhlicher Differentialgleichungen (Übungen, TU Darmstadt, Prof. Lang)
  • SS 2021:
    Tutorium: Mathematik I für Informatik (Übungen, TU Darmstadt)
    Computational Fluid Dynamics (Übungen, TU Darmstadt, Prof. Egger)
  • WS 2020/21:
    Mathematik III für ET (Übungen, TU Darmstadt, Prof. Farwig)
Wissenschaftliche Interessen
  • Numerische Analysis für PDEs
  • Space-Time FEM
Veröffentlichungen
  1. Langer, U; Löscher, R.; Steinbach, O.; Yang, H.: State-based nested iteration solution of optimal control problems with PDE constraints (2025), arxiv
  2. Langer, U; Löscher, R.; Steinbach, O.; Yang, H.: Robust finite element solvers for distributed hyperbolic optimal control problems (2024), CAMWA
  3. Löscher, R.; Reichelt, M.; Steinbach, O.: Efficient Solution of State-Constrained Distributed Parabolic Optimal Control Problems (2024), arxiv
  4. Löscher, R.; Steinbach, O.; Zank, M.: On a modified Hilbert transformation, the discrete inf-sup condition, and error estimates (2024), CAMWA DOI
  5. Löscher, R.; Reichelt, M.; Steinbach, O.: Optimal complexity solution of space-time finite element systems for state-based parabolic distributed optimal control problems (2024), arxiv
  6. Langer, U.; Löscher, R.; Steinbach, O.; Yang, H.: Parallel iterative solvers for discretized reduced optimality systems (2023), arxiv
  7. Hoonhout, D.; Löscher, R.; Steinbach, O.; Urzua-Torres, C.: Stable least-squares space-time boundary element methods for the wave equation (2023), arxiv
  8. Egger, H.; Kurz, S.; Löscher, R.: On the exponential stability of uniformly damped wave problems (2023), RINAM
  9. Köthe, C.; Löscher, R.; Steinbach, O.: Adaptive least-squares space-time finite element methods (2023), arxiv
  10. Gangl, P.; Löscher, R.; Steinbach, O.: Regularization and finite element error estimates for elliptic distributed optimal control problems with energy regularization and state or control constraints (2024), CAMWA DOI
  11. Langer, U.; Löscher, R.; Steinbach, O.; Yang, H.: Mass-lumping discretization and solvers for distributed elliptic optimal control problems (2023), NLA DOI
  12. Langer, U.; Löscher, R.; Steinbach, O.; Yang, H.: Robust iterative solvers for algebraic systems arising from elliptic optimal control problems (2023), LSSC 2023 URL
  13. Löscher, R.; Steinbach, O.: Space-time finite element methods for distributed optimal control of the wave equation, SINUM (2023), DOI
  14. Langer, U.; Löscher, R.; Steinbach, O.; Yang, H.: An adaptive finite element method for distributed elliptic optimal control problems with variable energy regularization (2022), CAMWA DOI
  15. Langer, U.; Löscher, R.; Steinbach, O.; Yang, H.: Robust finite element discretization and solvers for distributed elliptic optimal control problems, CMAM (2022), DOI
  16. Egger, H.; Harutyunyan, M.; Löscher, R.; Merkel, M.; Schöps, S.: On torque computation in electric machine simulation by harmonic mortar methods, J. Math. Ind. (2022) 12, URL
  17. Löscher, R.; Steinbach, O.; Zank, M.: Numerical results for an unconditionally stable space-time finite element method for the wave equation (2022), Domain Decomposition Methods in Science and Engineering XXVI, p. 625--632, ISBN: 978-3-030-95025-5
Vorträge
    2025
  • Stable and Adaptive Finite Element Methods for the Wave Equation, Seminar für Numerische Mathematik (Ulm), 2.-6. Juni
  • Stability analysis of a modified Hilbert transformation for second order initial value problems associated with space-time finite element methods of the wave equation, AnaDays (Salzburg), 8.-9. Mai
  • Stable and Adaptive Finite Element Methods for the Wave Equation, Seminar für Numerische Mathematik (Delft), 15.-17. Jänner
  • 2024
  • Space-Time Finite Element Methods: Foundations and Applications, Seminar: Numerical Simulations in Technical Sciences (Graz), 30. Oktober
  • A space-time reduced basis method for the wave equation, BEM Workshop (Kleinwalsertal), 26.-29. September
  • A unified finite element approach for PDE constrained optimal control problems and Space-time FEM for distributed optimal control problems subject to the wave equation with state or control constraints, Chemnitz FEM Symposium (Chemnitz), 9.-11. September
  • Forschungsaufenthalt, Gast bei C. Urzua-Torres (Delft), 15.-27. Juli
  • Stable and Adaptive Finite Element Methods for the Wave Equation, WAVES 2024 (Berlin), 1.-5. Juli
  • On a space-time reduced basis method for the wave equation, Gruppentreffen - Gast bei K. Urban (Ulm), 27.-28. Juni
  • Stable and Adaptive Finite Element Methods for the Wave Equation, Gruppentreffen - Gast bei H. Egger (Linz), 3.-4. April
  • 2023
  • Adaptive finite element methods for distributed optimal control problems with state or control constraints, Workshop (Graz), 30. November
  • Adaptive finite element methods for distributed optimal control problems with state constraints, Seminar - Gast bei H. Egger (Linz), 6.-7. November
  • On some properties of the modified Hilbert transformation, BEM Workshop (Kleinwalsertal), 1.-4. Oktober
  • Unconditionally Stable Space-Time (Adaptive) Finite Element Methods for the Wave Equation, USNCCM17 (Albuquerque, New Mexico), 23.-27. Juli
  • Forschungsaufenthalt, Gast bei C. Urzua-Torres (Delft), 2.-15. Juli
  • Adaptive (space-time) FEM for distributed optimal control problems, ANA Days (Wien), 27.-28. April
  • 2022
  • Adaptive space-time FEM for distributed optimal control problems subject to the wave equation, Oberseminar - Gast bei S. Volkwein (Konstanz), 5.-8. Dezember
  • Adaptive space-time FEM for the wave equation, Space-Time Workshop (Graz), 21. November
  • Numerical illustration of an abstract setting for distributed optimal control problems, Analysis and Numerics of Optimal Control problems - Workshop (Graz), 19. Oktober
  • Adaptive FEM for distributed optimal control problems subject to the wave equation with variable energy regularization, BEM Workshop (Kleinwalsertal), 13.-16. Oktober
  • Adaptive FEM for distributed optimal control problems subject to the wave equation with variable energy regularization, Chemnitz FEM Symposium (Herrsching), 15.-17. September
  • Space-time FEM for optimal control problems (Poster), Summer School "DD for Optimal control problems" (CIRM-Marseille), 5.-9. September
  • Towards unconditionally stable space-time FEM for the wave equation, ANA Days (Linz), 4.-6. Mai
  • 2021
  • A generalized approach to mass lumping using Hilbert complexes, AG Seminar - AG Numerik und Wiss. Rechnen TU Darmstadt (Darmstadt), 26. Oktober